On the generalized Ball bases

نویسندگان

  • Jorge Delgado
  • Juan Manuel Peña
چکیده

The Ball basis was introduced for cubic polynomials by Ball, and two different generalizations for higher degree m polynomials have been called the Said–Ball and the Wang–Ball basis, respectively. In this paper, we analyze some shape preserving and stability properties of these bases. We prove that the Wang–Ball basis is strictly monotonicity preserving for all m. However, it is not geometrically convexity preserving and is not totally positive for m > 3, in contrast with the Said–Ball basis. We prove that the Said–Ball basis is better conditioned than the Wang–Ball basis and we include a stable conversion between both generalized Ball bases. The Wang–Ball basis has an evaluation algorithm with linear complexity. We perform an error analysis of the evaluation algorithms of both bases and compare them with other algorithms for polynomial evaluation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Degree Reduction of Disk Wang-Bézier Type Generalized Ball Curves

A disk Wang-Bézier type generalized Ball curve is a Wang-Bézier type generalized Ball curve whose control points are disks in a plane. It can be viewed as a parametric curve with error tolerances. In this paper, we discuss the problem of degree reduction of disk Wang-Bézier type generalized Ball curve, that is, bounding disk Wang-Bézier type generalized Ball curves with lower degree disk Wa...

متن کامل

Degree Reduction of Disk Wang-Bézier Type Generalized Ball Curves

A disk Wang-Bézier type generalized Ball curve is a Wang-Bézier type generalized Ball curve whose control points are disks in a plane. It can be viewed as a parametric curve with error tolerances. In this paper, we discuss the problem of degree reduction of disk Wang-Bézier type generalized Ball curve, that is, bounding disk Wang-Bézier type generalized Ball curves with lower degree disk Wa...

متن کامل

A characterization of L-dual frames and L-dual Riesz bases

This paper is an investigation of $L$-dual frames with respect to a function-valued inner product, the so called $L$-bracket product on $L^{2}(G)$, where G is a locally compact abelian group with a uniform lattice $L$. We show that several well known theorems for dual frames and dual Riesz bases in a Hilbert space remain valid for $L$-dual frames and $L$-dual Riesz bases in $L^{2}(G)$.

متن کامل

The Survey of the Asymmetric Effects of Inflation's Positive and Negative Shocks on Inflation Uncertainty in Iran Through the Extending Ball Model (1992)

The purpose of current paper is to survey the asymmetric effects of inflation's positive and negative shocks on inflation uncertainty in short-run and long-run. For this end, first, the Ball model (1992) has been extended through the decomposition of inflation shocks to money demand's positive and negative shocks and money supply's positive and negative shocks. Then, through using nonlinear aut...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Adv. Comput. Math.

دوره 24  شماره 

صفحات  -

تاریخ انتشار 2006